Characterization of established cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo.

نویسندگان

  • Masae Kitagawa
  • Hidetoshi Tahara
  • Shoji Kitagawa
  • Hiroko Oka
  • Yasusei Kudo
  • Sunao Sato
  • Ikuko Ogawa
  • Mutsumi Miyaichi
  • Takashi Takata
چکیده

To study cellular characteristics of human cementoblasts using a cellular model is important for understanding the mechanisms of homeostasis and regeneration of periodontal tissues. However, at present no immortalized human cementoblast cell line has been established due to limitation of the life span. In the present study, therefore, we attempted to establish human cementoblast-like cell lines by transfection with telomerase catalytic subunit hTERT gene. Two stable clones (HCEM-1 and -2) with high telomerase activity were obtained and they grew over 200 population doublings without significant growth retardation. The expression of mRNA for differentiation markers, type I collagen, alkaline phosphatase (ALP), runt-related transcription factor 2, osteocalcin, bone sialoprotein and cementum-derived protein was revealed in these clones by RT-PCR. Moreover, these cells showed high ALP activity and calcified nodule formation in vitro. Interestingly, HCEM-2 showed cementum like formation on the surface of hydroxyapatites granules by subcutaneous transplantation into immunodeficient mice with hydroxyapatite granules. Thus, we established human cementoblast-like cell lines. We suggest that HCEM cell lines can be useful cell models for investigating the characteristics of human cementoblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tooth Regeneration with Stem Cell Sources

Introduction: During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. The first adult stem cells isolated from dental tissues were dental pulp stem cells (DPSCs). When transplanted with hydroxyl apatite/tri calcium phosphate (HA/TCP) powder, they formed a dentin-like structure...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Human Wharton’s jelly mesenchymal stem cells-derived secretome could inhibit breast cancer growth in vitro and in vivo

Objective(s): Controversial results have been reported regarding the anti-tumor properties of extracellular vesicles derived from mesenchymal stem cells (MSCs). The present study was conducted to evaluate whether secretome derived from Human Wharton’s jelly mesenchymal stem cells (hWJMSCs) may stimulate or inhibit breast cancer growth in vitro and in vivo.<st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2006